ESD RECORD COPY

ESD-TR-68-213

RETURN TO
SCIENTIFIC & TECHNICAL INFORMATION DIVISION
(ESTI), BUILDING 1211

A COMPUTER PROGRAM FOR BACKSCATTER

BY SMOOTHLY JOINED, SECOND DEGREE SURFACES OF REVOLUTION - 2430-6

C.E. Ryan, Jr.

ESD ACCESSION LIST ESTI Call No. AL 60773
Copy No. _____ of ____ cys.

April 1968

DEPUTY FOR SURVEILLANCE AND CONTROL SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public release and sale; its distribution is unlimited

(Prepared for Contract No. AF 19(628)-67-C-0308 by The Ohio State University, ElectroScience Laboratory, Department of Electrical Engineering, 1320 Kinnear Road, Columbus, Ohio.)

lof 2

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

ABSTRACT

A computer program for calculation of the echo area of smoothly joined, N section convex conducting surfaces of revolution, described by a second degree equation is presented. For the case of E $_\theta$ (parallel) polarization of the incident and scattered fields the solution is obtained by a combination of geometrical optics and creeping wave theory. For the case of E_φ (perpendicular) polarization the solution is obtained using geometrical optics, and the creeping wave is neglected. The computed results for E_θ polarization are in good agreement with measurements for prolate spheroids, prolate spheroid-sphere, and prolate spheroid-oblate spheroid combinations.

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	TARGET DESCRIPTION	1
III.	THE CREEPING WAVE COMPUTER PROGRAM	2
IV.	FUNCTIONS AND SUBROUTINES	6
V.	DATA	8
VI.	CONCLUSION	. 8
APPEI	NDIX I - THE COMPUTER PROGRAM LISTING	9
APPE	NDIX II - THE COMPUTER FLOW DIAGRAM	17
REFE	RENCES	25

A COMPUTER PROGRAM FOR BACKSCATTER BY SMOOTHLY JOINED, SECOND DEGREE SURFACES OF REVOLUTION

I. INTRODUCTION

The computer program listed in Appendix I, applies the geometrical optics and creeping wave solutions described in Ref. 1, 2 to obtain the backscattered fields of a surface of revolution. The target is composed of N sections, each section described by a second degree equation. In addition the target must be convex, and be smoothly joined at the boundaries between sections. The program as listed computes the backscattered field and echo area for E (parallel) polarization as a function of the incidence angle, for a given wavelength. The geometrical optics backscattered field is independent of polarization, thus the geometrical optics scattered field for the case of $E_{\dot{\Phi}}$ (perpendicular) polarization is also obtained. The creeping wave scattered field has not been included for E d polarization due to the difficulty in obtaining the ray path of the creeping wave in this case. 1 This program has been tested for E A polarization for prolate spheroid, prolate spheroid-sphere, and prolate spheroid-oblate spheroid targets. The results of these tests are presented in Ref. 1.

II. TARGET DESCRIPTION

The surface is described in each section by the second degree equation

(1)
$$F(r,\theta) = A_1 r^2 \sin^2 \theta + A_2 r^2 \cos^2 \theta + A_3 r^2 \sin \theta \cos \theta + A_4 r \cos \theta + A_5 r \sin \theta + A_6 = 0 .$$

The constants A_1 ... A_6 specify the surface in the section (i) bounded by the angles θ_i and θ_{i+1} . The surface which may be represented by Eq. (l) includes the sphere, prolate and oblate spheroids, and the ogive. In general any surface derived from a conic section can be described by this equation. More complex surfaces may be represented by using a large number of sections and approximating the desired surface by a second degree surface within each section. This program provides for 20 sections but this number can be readily increased.

A restriction on the target specification, which is a result of the method for finding the specular point, is that the coordinate origin be located such that the normal to the surface at z = 0 be r directed. That is, $dr/d\theta|_{z=0} = 0$. Discontinuities in the derivatives $(d^n r/d\theta^n)$ at the junctions between sections may exist. However, the effects of such discontinuities as well as the effects of tips are not included in this program. A discontinuity in the first derivative $(dr/d\theta)$ at the junction ("wedge" discontinuities) causes diffraction, and can be evaluated using wedge diffraction techniques. 1, 2 A discontinuity in the second derivative $(d^2 r/d\theta^2)$ at the junction results in reflection and transmission of an incident creeping wave at such a discontinuity. An example of this effect, the spherically capped ogive, has been discussed in Refs. 1 and 2. As the effects of a discontinuity in the first derivative are significent this program may not give good results for such a target. The creeping wave reflection effect due to a moderate second derivative discontinuity may be neglected with good results. Thus good results for the scattered field of perfectly conducting convex, smoothly joined surfaces of revolution may be obtained using this program.

III. THE CREEPING WAVE COMPUTER PROGRAM

The creeping wave computer program given in Appendix I uses geometrical optics and creeping wave theory to calculate the back-scattered field of the target. The geometrical optics field is obtained by identifying the specular point and calculating the Gaussian curvature at the specular point. The backscattered field is then calculated as given in Ref. 1. The creeping wave backscattered field is obtained by identifying the points of attachment and reradiation of the creeping wave, calculating the diffraction coefficient at these points, and by computing the attenuation of the creeping wave on a path defined by the E-plane of the target. The backscattered field is then calculated as given in Ref. 1. These contributions are added to obtain the total backscattered field.

Referring to the computer program listing shown in Appendix I, the function of the significant sections of the program will be discussed. The card numbers associated with each section will be specified. This discussion, together with the comment cards included in the program listing, is intended to give sufficient information about the program to enable a qualified programmer to both use and modify the program. Statements which are in common use in Fortran IV, such as DIMENSION, COMPLEX, and FORMAT statements will not be discussed as it is assumed that the reader has a knowledge of Fortran IV.

The COMMON declaration (0011) is used to store the constants required in Eq. (1) in the common block labelled /DATA/. This common block is used in conjunction with the unlabelled common block to transfer a particular set of constants A1 (I) to A6 (I) into the unlabelled common regions shared by the subroutines. This provision reduces the number of calling variables required by each subroutine.

The COMMON declaration (0013) is used to store and manipulate the angles corresponding to the section boundaries.

The statements 0018-0022 initialize constants which are required in the calculations.

The READ statements 0023-0027 read the required data, and provision is also made to write out this data for the purpose of identification.

The statements 0028-0030 set up the incrementation of the incidence angle THT and the statement 0031 calculates the propagation factor FK.

Next the loop for incrementing the incidence angle is entered, and the angle converted to radians. The logic statements (0036, 0037) serve two purposes if the incidence angle exceeds 90° . First the incidence angle is constrained to the range 0. < THT < $\pi/2$. Then the subroutine FNVRT (N) is called. The subroutine FNVRT (N) inverts the target, i.e., the portion of the target defined as section #1 becomes section #N, section #2 becomes section #(N-1) and so forth. This provision is necessary so that the propagation direction of the creeping waves which start at the point of attachment is always the positive angular direction. This provision simplifies the logic required to compute the creeping wave contributions. Figure 1 illustrates this provision.

The propagation vector and polarization vector of the incident wave are computed next (0038-0046). These vectors are used in the determination of the specular point and the points of attachment and reradiation of the creeping wave.

Next, the location of the specular point is determined (0047-0060). This is done by incrementing by DTHB along the surface of the target in the ϕ = 0 plane, performing the scalar product of the propagation vector and the surface normal vector at each point, and by finding the point at which this product is a maximum. This point, in section NSP, is the specular point (THSPP).

Fig. 1. A target (a) and the inversion (b).

The location of the points of attachment and reradiation of the creeping wave for $\phi = 0$, π is determined next (0062-0090). This is done in the same manner as the determination of the specular point location except that the scalar product of the polarization and normal vectors is used. After these points have been found they are written out together with the specular point (0091, 0092).

Having determined the location of the specular point (NSP, THSPP, RSP) the Gaussian curvature at the specular point is computed and used to calculate the geometrical optics scattered field (0093-0103).

The creeping wave path length is computed in 0104-0129. This is done by starting at the attachment point (THCWL, ϕ = 0) and performing a numerical integration of the differential arc length along the surface to the point θ = π . The length thus determined is CWLl. This process is then repeated for the attachment point (THCWL, ϕ = π) with a result CWL2. The product of the propagation factor and the sum of the path lengths then gives the free space phase of the creeping wave which propagates around the target.

Next the complex attenuation of the creeping wave is computed (0130-0150). The same process used to compute the path length is applied, with the exception that the complex attenuation coefficient must be integrated. This is accomplished using the EXTERNAL ALPHDS as the integration function.

Having obtained the creeping wave path length, attenuation, and points of attachment and reradiation, it is easy to calculate the creeping wave scattered field. This is done in 0151-0161. The phase is first calculated and the square of the diffraction coefficient determined. Then the creeping wave scattered field ECW is computed.

The total scattered field and echo area in square wavelengths are computed in 0162-0165. Next the common regions are reset if THTD > 90° and the incidence angle in degrees, the geometrical optics, creeping wave, total scattered field and echo area are written. At the completion of the loop (0169) the program is terminated.

IV. FUNCTIONS AND SUBROUTINES

In addition to the arguments required to call each subroutine or function as given in the description below, it is necessary to transfer the constants in Eq. (1) for the section (I) from the /DATA/common block to the unlabelled common block. All function and subroutines in which these COMMON statements appear require that such a transfer be made. This provision reduces the number of arguments required in the functions and subroutines.

Complex Function DELSP(THT) 0172-0179

This function calculates the incremental arc length in the θ direction at THT. Although the arc length is a real number this function is declared complex so that it may be used as an external function in the numerical integration.

Subroutine FNVRT(N) 0180-0195

This subroutine interchanges the data which specifies the target, thus inverting the target by 180° in θ .

Complex Function SPHASE (THTI, PHII, THTB, PHIB, RB, FK) 0196-0204

This function determines the phase of the incident field (THTI, PHII) at a point on the target (RB, THTB, PHIB) for a propagation factor FK.

Complex Function PHASE (THTI, PHII, THTB, PHIB, RB, FK) 0205-0214

This function determines the backscattered phase of the field at (RB, THTB, PHIB) for an incident field (THTI, PHII) and propagation factor FK.

Complex Function ALPH (RH01, RH02, WAVE) 0215-0230

This function computes the complex creeping wave attenuation coefficient for the orthogonal radii of curvature RH01 and RH02 and a wavelength WAVE. RH01 is the radius of curvature in the propagation direction.

Complex Function DSQ (RII, RSI, WAVE) 0231-0243

This function computes the square of the creeping wave diffraction coefficient as a function of the radii of curvature RI1, RS1 in the propagation direction and the wavelength WAVE.

Complex Function ALPHDS (THT) 0244-0260

This function determines the product of the creeping wave attenuation coefficient and the metric of the surface which is needed in the integration for the attenuation along the path.

Subroutine DIFFGO(R, THT, RTHT, RTTH, ECAP, FCAP, GCAP, ELC, FLC, GLC) 0261-0301

This subroutine calculates the first (RTHT) and second (RTTH) derivatives of the distance (R) from the origin to the surface at the point (R, THT). In addition the coefficients of the first and second fundamental forms of differential geometry of the surface ECAP, FCAP, GCAP, ELC, FLC, GLC are computed.¹

Subroutine FSPDT (RSP, THSP, FNT, THTS, THTF, DTHT, PHI, VX, VY, VZ) 0302-0326

This subroutine finds the point (RSP, THSP) in the section FNT bounded by THTS and THTF where the scalar product of the surface normal vector and the vector (VX, VY, VZ) is a maximum. This is done by incrementing in angle by DTHT and selecting the largest scalar product.

Subroutine FINT (SSS, FCTI, FLL, FUL, ERRR, NX) 0327-0377 This is a subroutine for numerical integration of the complex external function FCTI between the limits FLL and FUL. The complex result is returned in SSS. ERRR specifies the percent error desired and the integer NX determines whether equal integration

desired and the integer NX determines whether equal integration increments (NX = 1) or adjusted increments (NX = 2) are used. A description of this integration technique is given in Ref. 3.

Subroutine FNORM (FNVX, FNVY, FNVZ, R, THT, PHI) 0378-0400 The subroutine FNORM calculates the surface normal vector (FNVX, FNVY, FNVZ) at the point on the surface described by the spherical coordinates R, THT, PHI.

Function RAD(THT) 0401-0419

This function computes the distance from the origin to the point on the surface at the angle $THT_{\scriptscriptstyle{ullet}}$

Subroutine FCOMM(I) 0420-0431

This subroutine transfers the constants required by Eq. (1) for the Ith section from the /DATA/ common storage block to the unlabelled common block.

V. DATA

A set of input data is shown in Fig. 2. The order of cards is as follows:

Card 1 - specifies the number of sections (N) in the target.

Card 2 - specifies the wavelength and the increment in incidence angle.

Next N cards - specify the initial and final angular boundaries of the section in radians and the constants required in Eq. (1).

The particular target specified by this data is the prolate spheroid-oblate spheroid combination described in Ref. 1.

```
00002

1.0

0. 1.570796 2.4799 .5102 0. 0. 0.

1.570796 3.1415927 2.4799 5.0955 0. 0.
```

Fig. 2. The input data.

VI. CONCLUSION

A computer program for backscatter by smoothly joined, second degree surfaces of revolution has been developed using the theory presented in Refs. 1 and 2. This program has been tested for prolate spheroids, prolate spheroid-sphere, and prolate spheroid-oblate spheroid combinations with good results. The description of the computer program given in this report should enable a capable programmer to use and modify this program.

The creeping wave computer program was originally intended to be integrated with the computer program based upon wedge diffraction techniques. 1,4 This goal can be obtained by modification of the logic sections of the two programs, and by converting the computational sections of each of the programs to a subroutine form. Thus a program utilizing both wedge diffraction and creeping wave theory can be assembled.

APPENDIX I THE COMPUTER PROGRAM LISTING

```
SEXECUTE
                IBJOB
                                                                                     0000
$IBJOB
                GO . MAP
                                                                                     0001
                LIST . NODECK
SIBFTC CREEP
                                                                                     2000
      FORMAT (115)
  1
                                                                                     0003
 2
      FORMAT (2F10.5)
                                                                                     0004
  3
      FORMAT (8F10.5)
                                                                                     0005
 4
      FORMAT (3F15.8)
                                                                                     0006
 5
      FORMAT (7F15.8)
                                                                                     0007
      FORMAT(7H THSPP=F15.8,GH THCWU=F15.8,7H THCWL=F15.8)
   6
                                                                                     0008
      FORMAT (5H NSP=115.6H NSWU=115.6H NCWL=115)
                                                                                     0009
  8
      FORMAT(6H CWL1=F15.8.6H CWL2=F15.8)
                                                                                     0010
      COMMONRA1 . RA3 . RB1 . RA9 . RA10 . RA11 . WAVE/DATA/AR1 (20) . AR3 (20) . BR1 (20) .
                                                                                     0011
     CAR9(20) + AR10(20) + AR11(20)
                                                                                     0012
       COMMON/ANGL/THT1(20) + THTF(20) + THTP(20)
                                                                                     0013
      COMPLEX PALP1 . PALP2
                                                                                     0014
      COMPLEX PHASP, EGO, ALPHDS, ATTEN, ALP1, ALP2, PHCW1, PHCW2, DSQC, ECW, ETOT
                                                                                     0015
      COMPLEX CPTHL . PHASE . ALPH . DSQ . DELSP . CML 1 . CML 2 . CEXP
                                                                                     0016
      COMPLEX SPHASE
                                                                                     0017
      DEGRAD=0.01745329
                                                                                     0018
      RADEG=57.29578
                                                                                     0019
      PI=3.1415927
                                                                                     0020
       PI2=PI/2.
                                                                                     0021
      TP=2.*PI
                                                                                     0022
      READ(5.1) N
                                                                                     0023
      READ(5.2) WAVE . DTHT
                                                                                     0024
      WRITE (6.2) WAVE . DIHT
                                                                                     0025
      READ(5+3)(THTI(IR)+THTF(IR)+AR1(IR)+AR3(IR)+BR1(IR)+AR9(IR)+AR10(I
                                                                                     0026
                                                                                     0027
     CR) + AR11 (IR) + IR=1 + N)
      DTHB=DEGRAD
                                                                                     0028
      FNT=180./DTHT
                                                                                     0029
      NT=FNT-1.
                                                                                     0030
      FK=TP/WAVE
                                                                                     0031
      DO 100 NTH=1.NT.1
                                                                                     0032
                                                                                     0033
      FNTH=NTH
      THTD=FNTH*DTHT
                                                                                     0034
      THT=DEGRAD*THTD
                                                                                     0035
      IF (THTD.GT.90.) THT=PI-THT
                                                                                     0036
      IF (THTD.GT.90.) CALL FNVRT(N)
                                                                                     0037
      CALCULATE INCIDENCE VECTOR
                                                                                     0038
C
                                                                                     0039
      PHI=0.
      VIX=-SIN(THT)
                                                                                     0040
      VIZ = -COS(THT)
                                                                                     0041
      VIY=O.
                                                                                     0042
      CALCULATE INCIDENT E-VECTOR-PARALLEL POL.
C
                                                                                     0043
      EIX=COS(THT)
                                                                                     0044
                                                                                     0045
      FIY=0.
                                                                                     0046
      EIZ=-SIN(THT)
C
      DETERMINE SPECULAR POINT
                                                                                     0047
                                                                                     0048
      FNSPP=0.
      NSP=0
                                                                                     0049
      RSPP=0.
                                                                                     0050
      THSPP=0.
                                                                                     0051
      D0410 ISP=I+N+1
                                                                                     0052
      CALL FCOMM(ISP)
                                                                                     0053
      CALL FSPDT(RSP,THSP,FNSP,THT1(ISP),THTF(ISP),DTHB,00,,VIX,VIY,V1Z)
                                                                                     0054
      IF (FNSPP.GT.FNSP.OR.THSP.GT.PI2)GOTO 411
                                                                                     0055
                                                                                     0056
      FNSPP=ABS(FNSP)
      RSPP=RSP
                                                                                     0057
      THSPP=THSP
                                                                                     0058
                                                                                     0059
      NSP=ISP
 411
      CONTINUE
                                                                                     0060
                                                                                     0061
 410
      CONTINUE
      DETERMINE CREEPING WAVE POINTS
                                                                                     0062
C
      FCWU=0.
                                                                                     0063
```

```
NCWU=0
                                                                                   0064
      RSCWU=0.
                                                                                   0065
      THCWU=0.
                                                                                   0066
      DO 510 ICW=1 .N . I
                                                                                   0067
      CALL FCOMM(ICW)
                                                                                   0068
      CALL FSPDT(RCWU,THWU,FWU,THT!(ICW),THTF(ICW),DTHB,00,EIX,EIY,EIZ)
                                                                                   0069
      IF (FCWU.GT.FWU.OR.THWU.LT.P12)GO TO 511
                                                                                   0070
      FCWU=ABS(FWU)
                                                                                   0071
      RSCWU=RCWU
                                                                                   0072
      THCWU=THWU
                                                                                   0073
                                                                                   0074
      NCWU=ICW
      CONTINUE
                                                                                   0075
51 I
                                                                                   0076
      CONTINUE
510
                                                                                   0077
      FCWL=0.
                                                                                   0078
      NCWL=0
      RSCWL=0.
                                                                                   0079
                                                                                   0080
      THCWL = 0 .
      DO 520 ICW=I.N.1
                                                                                   0081
      CALL FCOMM(ICW)
                                                                                   0082
      CALL FSPDT(RCWL+THWL+FWL+THT,I(ICW)+THTF(ICW)+DTHB+PI+EIX+EIY+EIZ)
                                                                                   0083
      IF(FCWL.GT.FWL.OR.THWL.GT.PI2) GO TO 521
                                                                                   0084
                                                                                   0085
      FCWL=FWL
                                                                                   0086
      RSCWL=RCWL
                                                                                   0087
      THCWL=THWL
                                                                                   0088
      NCWL=ICW
 521
      CONTINUE
                                                                                   0089
 520
      CONTINUE
                                                                                   0090
      WRITE(6.7) NSP.NCWU.NCWL
                                                                                   0091
      WRITE (6.6) THSPP. THCWU. THCWL
                                                                                   0092
      CALCULATE GEOMETRICAL OPTICS TERM
                                                                                   0093
C
      CALL FCOMM(NSP)
                                                                                   0094
      CALL DIFFGO(RSPP,THSPP,RDUM,RDDM,ECAP,FCAP,GCAP,ELC,FLC,GLC)
                                                                                   0095
                                                                                   0096
      IF(GCAP) 20.21.20
                                                                                   0097
      GAUSS=ELC/ECAP
  21
                                                                                   0098
      GAUSS=GAUSS*GAUSS
                                                                                   0099
      GO TO 22
  20
      GAUSS=(ELC*GLC-FLC*FLC)/(ECAP*GCAP-FCAP*FCAP)
                                                                                   0100
                                                                                   0101
  22
      CONTINUE
      PHASP=PHASE (THT . O . . THSPP . O . . RSPP . FK)
                                                                                   0102
                                                                                   0103
      FGO=-SQRT(1./GAUSS)*PHASP/2.
      CALCULATE CREEPING WAVE PATH LENGTH
                                                                                   0104
C
                                                                                   0105
      EXTERNAL DELSP
                                                                                   0106
      CWI 1=0.
                                                                                   0107
      DO 522 NCPU=NCWU+N+I
                                                                                   0108
      CALL FCOMM(NCPU)
                                                                                   0109
      TCWI=THCWU
                                                                                   0110
      TCW2=THTF (NCPU)
      IF (NCPU.GT.NCWU) TCW1=THTI(NCPU)
                                                                                   0111
      CALL FINT (CML1.DELSP.TCW1.TCW2.5.0.2)
                                                                                   0112
                                                                                   0113
      RCML1=REAL (CML1)
                                                                                   0114
      CWL1=CWLI+RCML1
                                                                                   0115
 522
     CONTINUE
                                                                                   0116
      CWL2=0.
                                                                                   0117
      DO 524 NCPL=NCWL+N+1
                                                                                   0118
      CALL FCOMM(NCPL)
                                                                                   0119
      TCW1=THCWL
                                                                                   0120
      TCW2=THTF (NCPU)
                                                                                   0121
      IF (NCPL . GT . NCWL) TCW1 = THTI (NCPL)
                                                                                   0122
      CALL FINT (CML2, DELSP, TCW1, TCW2, 5, 0, 2)
                                                                                   0123
      RCML2=REAL (CML2)
                                                                                   0124
      CWL2=CLW2+RCML2
                                                                                   0125
 524
      CONTINUE
                                                                                   0126
      WRITE(6.8) CWL1.CWL2
                                                                                   0127
      FKL1=FK*CWL1
```

```
FKL2=FK*CWL2
                                                                                  0128
      FKLCW=FKLI+FKL2
                                                                                  0129
C
      CALCULATE CREEPING WAVE ATTENUATION
                                                                                  0130
      EXTERNAL ALPHDS
                                                                                  0131
      ALPI=(0.,0.)
                                                                                  0132
      DO 530 NCPU=NCWU+N+I
                                                                                  0133
      CALL FCOMM(NCPU)
                                                                                  0134
      TCWT=THCWU
                                                                                   0135
      TCW2=THTF (NCPU)
                                                                                   0136
      IF (NCPU.GT.NCWU) TCW1=THTI(NCPU)
                                                                                   0137
      CALL FINT(PALP1 + ALPHDS + TCW1 + TCW2 + 5 + 0 + 2)
                                                                                   0138
      ALPI=ALPI+PALPI
                                                                                   0139
 530 CONTINUE
                                                                                   0140
      ALP2=(0..0.)
                                                                                   0141
      DO 532 NCPL=NCWL . N . I
                                                                                   0142
      CALL FCOMM(NCPL)
                                                                                   0143
      TCWI=THCWL
                                                                                   0144
      TCW2=THTF (NCPL)
                                                                                  0145
      IF(NCPL.GT.NCWL) TCWI=THTI(NCPL)
                                                                                  0146
      CALL FINT (PALP2, ALPHDS, TCW1, TCW2, 5.0, 2)
                                                                                  0147
      ALP2=ALP2+PALP2
                                                                                  0148
 532 CONTINUE
                                                                                  0149
      ATTEN=ALP1+ALP2
                                                                                  0150
C
     CALCULATE CREEPING WAVE
                                                                                  0151
      PHCWI=SPHASE(THT.0..THCWU.0..RSCWU.FK)
                                                                                  0152
      PHCW2=SPHASE(THT.0.+THCWL.0.+RSCWL.FK)
                                                                                   0153
      CALLDIFFGO(RSCWU,THCWU,RDUM,RDDM,ECAP1,FCAP1,GCAP1,ELC1,FLC1,GLC1)
                                                                                   0154
      CALLDIFFGO(RSCWL,THCWL,RDUM,RDDM,ECAP2,FCAP2,GCAP2,ELC2,FLC2,GLC2)
                                                                                  0155
      FKAP1=ELCI/ECAPI
                                                                                   0156
      FKAP2=ELC2/ECAP2
                                                                                   0157
      RHCWI = I . / FKAPI
                                                                                   0158
      RHCW2=1./FKAP2
                                                                                   0159
      DSQC=DSQ(RHCW1+RHCW2+WAVE)
                                                                                   0160
      ECW=-2.*DSQC*PHCWI*PHCW2*CEXP(-ATTEN+(0.,-I.)*FKLCW)
                                                                                   0161
      ETOT=EGO+ECW
                                                                                   0162
      EMAG=CABS(ETOT)
                                                                                   0163
      SIGMA=2.*TP*EMAG*EMAG
                                                                                   0164
      SIGMAL=10.*ALOG10(SIGMA)
                                                                                   0165
      IF(THTD.GT.90.) CALL FNVRT(N)
                                                                                   0166
      WRITE(6+5)THTD+EGO+ECW+ETOT
                                                                                   0167
      WRITE(6,4)THTD,SIGMA,SIGMAL
                                                                                   8610
 100
      CONTINUE
                                                                                   0169
      STOP
                                                                                   0170
      END
                                                                                   0171
$IBFTC DELSP. LIST
                                                                                   0172
      COMPLEX FUNCTION DELSP(THT)
                                                                                   0173
      R=RAD(THT)
                                                                                   0174
      CALL DIFFGO(R, THT, RDUM, RDDM, ECAP, FCAP, GCAP, ELC, FLC, GLC)
                                                                                   0175
      ECAP=ABS(ECAP)
                                                                                   0176
      DELSP=CMPLX(SQRT(ECAP) . 0 . )
                                                                                   0177
                                                                                   0178
      RETURN
                                                                                   0179
      END
$IBFTC FNVRT . LIST
                                                                                   0180
      SUBROUTINE FNVRT(N)
                                                                                  0181
      COMMONRA1, RA3, RB1, RA9, RA10, RA11, WAVE/DATA/AR1(20), AR3(20), BR1(20),
                                                                                  0182
     CAR9(20), ARIO(20), ARII(20)
                                                                                  0183
       COMMON/ANGL/THTI(20) + THTF(20) + THTP(20)
                                                                                  0184
                                                                                   0185
      PI=3.1415927
       DO 10 I=1 .N.I
                                                                                  0186
      BRI(I) = -BR1(I)
                                                                                   0187
                                                                                   8810
      AR9(I) = -AR9(I)
                                                                                   0189
      THTP(I)=PI-THTF(I)
      THIF (I)=PI-THII(I)
                                                                                   0190
      THTI(I) = \hat{I}HTP(I)
                                                                                   1610
```

```
CONTINUE
                                                                                   0192
      RETURN
                                                                                   0193
      END
                                                                                   0194
SIBFTC SPHAS
                LIST
                                                                                   0195
      COMPLEX FUNCTION SPHASE (THTI.PHII.THTB.PHIB.RB.FK)
                                                                                   0196
      FS=1 .
                                                                                   0197
      TEST=ABS(PHII-PHIB)
                                                                                   0198
      IF(TEST.EQ.O.) FS=-I.
                                                                                   0199
      FL=RB*COS(THTI+FS*THTB)
                                                                                   0200
      FKL=FK*FL
                                                                                   0201
      SPHASE = CMPLX (COS(FKL) + SIN(FKL))
                                                                                   0202
       RETURN
                                                                                   0203
      END
                                                                                   0204
$IBFTC PHAS.
               LIST
                                                                                   0205
       COMPLEX FUNCTION PHASE (THTI . PHII . THTB . PHIB . RB . FK)
                                                                                   0206
      FS=1 .
                                                                                   0207
      TEST=ABS(PHII-PHIB)
                                                                                   0208
      IF (TEST.EQ.O.) FS=-I.
                                                                                   0209
      FL=2.*RB*COS(THT1+FS*THTB)
                                                                                   0210
      FKL =FK *FL
                                                                                   0211
      PHASE=CMPLX(COS(FKL)+SIN(FKL))
                                                                                   0212
       RETURN
                                                                                   0213
      END
                                                                                   0214
$IBFTC ALPH.
               LIST
                                                                                   0215
      COMPLEX FUNCTION ALPH(RHO1 + RHO2 + WAVE)
                                                                                   0216
      COMPLEX ALPH•EX
                                                                                   0217
      EX=CMPLX(0.86603.0.5)
                                                                                   8150
      IF (RH02.EQ.C.) GO TO 10
                                                                                   0219
      RA=RH01/RH02
                                                                                   0220
      U2=(1.48/EXP(0.84*RA))+0.20
                                                                                   0221
      GO TO 11
                                                                                   0222
 10
      U2=0.20
                                                                                   0223
      AR1=2.*ALOG(RHO1)/3.
 11
                                                                                   0224
      FR1=1./EXP(AR1)
                                                                                   0225
      WV1=ALOG(WAVE)/3.
                                                                                   0226
      FWV=1 • /EXP(WV1)
                                                                                   0227
      ALPH=U2*FR1*FWV*EX
                                                                                   0228
      RETURN
                                                                                   0229
      END
                                                                                   0230
SIBFTC DSQ.
                                                                                   0231
               LIST
      COMPLEX FUNCTION DSQ(RII+RSI+WAVE)
                                                                                   0232
      COMPLEX DSQ.EX
                                                                                   0233
      EX=CMPLX(.96593.-.25882)
                                                                                   0234
      U1=0.270
                                                                                   0235
      A=SQRT(RI1*RS1)
                                                                                   0236
      AL=ALOG(A)/3.
                                                                                   0237
                                                                                   0238
      WV=2.*ALOG(WAVE)/3.
                                                                                   0239
      FA=EXP(AL)
                                                                                   0240
      FW=EXP(WV)
                                                                                   0241
      DSQ=U1*FA*FW*EX
                                                                                   0242
      RETURN
      END
                                                                                   0243
$IBFTC ALPDS. LIST
                                                                                   0244
      COMPLEX FUNCTION ALPHDS(THT)
                                                                                   0245
      COMMON AR1+AR3+ER1+AR9+AR10+AR11+WAVE
                                                                                   0246
      COMPLEX ALPHDS.ALP.ALPH
                                                                                   0247
      PI=3.1415927
                                                                                   0248
                                                                                   0249
      R=RAD(THT)
      CALL DIFFGO(R.THT.RTHT.RDDM.ECAP.FCAP.GCAP.ELC.FLC.GLC)
                                                                                   0250
                                                                                   0251
      FMET=SQRT (ECAP)
                                                                                   0252
      RH01=ECAP/ELC
                                                                                   0253
      RH02=GCAP/GLC
                                                                                   0254
      IF (THT . EQ . O . . OR . THT . EQ . PI) RHO2=RHO1
                                                                                   0255
      RH01 = ABS(RH01)
```

```
0256
      RHO2=ABS(RHO2)
      ALP=ALPH (RHO1 . RHO2 . WAVE)
                                                                                   0257
      ALPHDS=ALP*FMET
                                                                                   0258
      RETURN
                                                                                   0259
      END
                                                                                   0260
$1BFTC D1FGO
                L1ST
                                                                                   0261
      SUBROUTINE D1FFGO(R+THT+RTHT+RTTH+ECAP+FCAP+GCAP+ELC+FLC+GLC)
                                                                                   0262
       COMMON A1 . A3 . B1 . A9 . A10 . A11 . WAVE
                                                                                   0263
      DIFFERENTIAL GEOMETRY PROPERTIES OF QUADRIC SURFACE OF REVOLUTION
C
                                                                                   0264
      F(R,THT)=A1*R*R*SIN(THT)*S1N(THT)+A3*R*R*COS(THT)*COS(THT)+B1*R*R*
C
                                                                                   0265
      S1N(THT)*COS(THT)+A9*R*COS(THT)+A10*R*SIN(THT)+A11=0
C
                                                                                   0266
C
      THETA-PH1 COORDINATES
                                                                                   0267
C
      UPPER AND LOWER CASE F = 0
                                                                                   0268
C
      INPUT A1 . A3 . B1 . A9 . A10 . A11 . R . THT
                                                                                   0269
      PH1=0.
                                                                                   0270
      ST=SIN(THT)
                                                                                   0271
      CT=COS(THT)
                                                                                   0272
      S2T=SIN(2.*THT)
                                                                                   0273
      C2T=COS(2.*THT)
                                                                                   0274
      ST2=ST*ST
                                                                                   0275
      CT2=CT*CT
                                                                                   0276
      SP = SIN(PHI)
                                                                                   0277
      CP = COS(PHI)
                                                                                   0278
      U=A1*ST2+A3*CT2+B1*ST*CT
                                                                                   0279
      V=A9*CT+A10*ST
                                                                                   0280
      UTHT=A1*S2T-A3*S2T+B1*(CT2-ST2)
                                                                                   0281
      VTHT=-A9*ST+A10*CT
                                                                                   0282
      UTTH=2.*(A1-A3)*C2T-2.*B1*S2T
                                                                                   0283
      VTTH=-A9*CT-A10*ST
                                                                                   0284
      S1=2.*R*U+V
                                                                                   0285
      S2=R*UTHT+VTHT
                                                                                  0286
      FMAG=SQRT(S1*S1+S2*S2)
                                                                                   0287
      FMAG2=FMAG*FMAG
                                                                                   0288
      FMAG3=FMAG2*FMAG
                                                                                   0289
      CALCULATE UPPER CASE E.F.G
C
                                                                                   0290
      RTHT=-R*S2/S1
                                                                                   0291
      ECAP = R*R+RTHT*RTHT
                                                                                   0292
      FCAP = 0.
                                                                                   0293
      GCAP = R*R*ST2
                                                                                   0294
      CALCULATE LOWER CASE E.F.G
                                                                                   0295
C
      RTTH = -(2.*RTHT*(2.*R*UTHT+VTHT)+2.*RTHT*RTHT*U+R*(R*UTTH+VTTH))/S1
                                                                                   0296
      ELC=(RTTH*S1+2.*RTHT*S2-R*S1)/FMAG
                                                                                   0297
      FLC = 0.
                                                                                   0298
      GLC=-R*(S1*ST2+S2*ST*CT)/FMAG
                                                                                   0299
      RETURN
                                                                                   0300
      END
                                                                                   0301
$1BFTC FSPDT. LIST
                                                                                   0302
      SUBROUTINE FSPDT (RSP+THSP+FNT+THTS+THTF+DTHT+PHI+VX+VY+VZ)
                                                                                   0303
      INPUT THTS.THTF.DTHT.PHI.VX.VY.VZ
C
                                                                                   0304
      COMMON ARI + AR3 + BR1 + AR9 + AR10 + AR11 + WAVE
                                                                                   0305
      SEARCH FOR LARGEST SCALAR PRODUCT IN SECTION
C
                                                                                   0306
      FND=ABS((THTF-THTS)/DTHT)
                                                                                   0307
      ND=FND+1 .
                                                                                   0308
                                                                                   0309
      FNT=0.
      RSP=0.
                                                                                   0310
      THSP=0.
                                                                                   0311
       DO 100 I=1.ND.1
                                                                                   0312
      FI = I - 1
                                                                                   0313
      THT=F1*DTHT+THTS
                                                                                   0314
                                                                                   0315
      R=RAD(THT)
      CALL FNORM(FNX, FNY, FNZ, R, THT, PHI)
                                                                                   0316
      FNE=VX*FNX+VY*FNY+VZ*FNZ
                                                                                   0317
                                                                                   0318
      FNE = ABS (FNE)
      1F(FNT.GT.FNE) GO TO 11
                                                                                   0319
```

	FNT=ABS(FNE)		0320
	RSP=R		0321
	THSP=THT		0322
11	CONTINUE		0323
100	CONTINUE		0324
100			
	RETURN		0325
	END		0326
\$ IBFT	C FINT. LIST		0327
	SUBROUTINE FINT(SSS+FCTI+FLL+FUL+ERRR+NX)		0328
С	INPUT FCTI+FLL+FUL+ERRR+NX		0329
С	EXTERNAL DECLARATION FOR FUNCTION FCTI REQUIRED		0330
	COMPLEX SSS.SS.FSS.FCTI.TRAP.TRAZ.SIMP.SIMZ.FNCP.FNCZ		0331
	FN=NX		0332
	DEL=(FUL-FLL)/FN		0333
	SSS=(00.)		0334
	ERR=0.01*ERRR/FN		0335
	A=FLL		0336
	DO 40 NNX=1 • NX • 1		0337
	MXX=0		0338
	B=A+DEL		0339
	SS=(0.,0.)		0340
	MX=2		0341
	DX=DEL/2.		0342
	LX=1		0343
	X = A		0344
	GO TO 15		0345
c			
5	TRAZ=DX*SS		0346
	MX = 1		0347
	LX=1		0348
	DX=DEL ·		0349
10	SS=0 ◆		0350
	L×=L×+1		0351
	DX=0.5*DX		0352
	X = A + DX		0353
15	DO 20 IX=1 • MX • 1		0354
	FSS=FCTI(X)		0355
	SS=SS+FSS		0356
20	,		
20	X=X+2•*DX		0357
	IF(LX.EQ.I) GO TO 5		0358
	MX=2*MX		0359
	TRAP=0.5*TRAZ+DX*SS		0360
	DIF=CABS(TRAP-TRAZ)		0361
	IF(DIF.GE.DIP) MXX=MXX+1		0362
	DIP=DIF		0363
	SIMP=(4.*TRAP-TRAZ)/3.		0364
	FNCP=(16.*SIMP+SIMZ)/15.		0365
	ER=CABS(1FNCZ/FNCP)		0366
			0367
	TRAZ=TRAP		
	SIMZ=SIMP		0368
	FNCZ=FNCP		0369
	IF(LX+LT+4) GO TO 10		0370
	IF(MXX.GT.4) GO TO 30		0371
	IF(ER.GT.ERR) GO TO 10		0372
30	SSS=SSS+FNCP		0373
40	A=A+DEL		0374
50	CONTINUE		0375
	RETURN		0376
	END		0377
¢ IRET	C FFNRM. LIST		0378
⇒10F1	SUBROUTINE FNORM(FNVX+FNVY+FNVZ+R+THT+PHI)		0379
			0380
С	INPUT RATHIAPHI		0381
	COMMON AR1 AR3 BRI AR9 AR10 AR11 WAVE		0381
	ST=SIN(THT)		
	CT=COS(THT)		0383

```
SP=SIN(PHI)
                                                                                     0384
      CP=COS(PHI)
                                                                                     0385
      U=AR1*ST*ST+AR3*CT*CT+BR1*ST*CT
                                                                                     0386
      V=AR9*CT+AR10*ST
                                                                                     0387
      UTH=2.*(AR1-AR3)*ST*CT+BR1*(CT*CT-ST*ST)
                                                                                     0388
       VTH=-AR9*ST+AR10*CT
                                                                                     0389
      F1=2.*R*U+V
                                                                                     0390
      F2=R*UTH+VTH
                                                                                     0391
      FX=ST*CP*F1+CT*CP*F2
                                                                                     0392
      FY=ST*SP*F1+CT*SP*F2
                                                                                     0393
      FZ=CT*F1-ST*F2
                                                                                     0394
      FN=SQRT(FX*FX+FY*FY+FZ*FZ)
                                                                                     0395
      FNVX=FX/FN
                                                                                     0396
      FNVY=FY/FN
                                                                                     0397
      FNVZ=FZ/FN
                                                                                     0398
      RETURN
                                                                                     0399
      END
                                                                                     0400
$18FTC RADD
                L1ST
                                                                                     0401
      FUNCTION RAD(THT)
                                                                                     0402
      CALCULATE R
C
                                                                                     0403
      COMMON AR1 . AR3 . BR1 . AR9 . AR10 . AR11 . WAVE
                                                                                     0404
      ST=SIN(THT)
                                                                                     0405
      CT=COS(THT)
                                                                                     0406
      C1=AR1*ST*ST+AR3*CT*CT+BR1*ST*CT
                                                                                     0407
      C2=AR9*CT+AR10*ST
                                                                                     0408
      C3=AR11
                                                                                     0409
      IF(C1.EQ.O.)GO TO 11
                                                                                     0410
      ARG=SQRT(C2*C2-4.*C1*C3)
                                                                                     0411
      R = (-C2 + ARG) / (2 \cdot *C1)
                                                                                     0412
      R2 = (-C2 - ARG) / (2 \cdot *C1)
                                                                                     0413
      1F(R2.LT.R.AND.R2.GT.O.) R=R2
                                                                                     0414
      GO TO 12
                                                                                     0415
      R=-C3/C2
 11
                                                                                     0416
      RAD=R
 12
                                                                                     0417
      RETURN
                                                                                     0418
                                                                                     0419
      END
$IBFTC FCOM.
                LIST
                                                                                     0420
      SUBROUTINE FCOMM(I)
                                                                                     0421
      COMMONRA1 . RA3 . RB1 . RA9 . RA10 . RA11 . WAVE/DATA/AR1(20) . AR3(20) . BR1(20) .
                                                                                     0422
     CAR9(20), AR10(20), AR11(20)
                                                                                     0423
      RA1 = AR1(1)
                                                                                     0424
      RA3=AR3(I)
                                                                                     0425
      RB1=BR1(1)
                                                                                     0426
      RA9 = AR9(1)
                                                                                     0427
      RA10=AR10(1)
                                                                                     0428
      RA11=AR11(I)
                                                                                     0429
      RETURN
                                                                                     0430
      END
                                                                                     0431
$DATA
                                                                                     0432
```

APPENDIX II THE COMPUTER FLOW DIAGRAM

The flow diagram presented in Ref. 1 is presented here. This diagram shows the sequence in which the operations are performed.

CREEPING WAVE COMPUTER PROGRAM

HORIZONTAL POLARIZATION

REFERENCES

- 1. Ryan, C.E., Jr., "A Geometrical Theory of Diffraction Analysis of the Radar Cross Section of a Sectionally Continuous Second Degree Surface of Revolution," Report 2430-4, April 1968, ElectroScience Laboratory, The Ohio State University Research Foundation; prepared under Contract F-19628-67-C-0318 for Department of the Air Force, Electronic Systems Division, L.G. Hanscom Field, Bedford, Massachusetts.
- 2. Ryan, C.E., Jr., "Memorandum on Analysis of Echo Area of Targets Using Geometrical Theory of Diffraction and Creeping Wave Theory," Report 2430-1, 22 May 1967, ElectroScience Laboratory, The Ohio State University Research Foundation; prepared under Contract F-19628-67-C-0318 for Department of the Air Force, Electronic Systems Division, L.C. Hanscom Field, Bedford, Massachusetts. (AD 658 469).
- 3. Richmond, J.H., "Scattering by Wire Loops and Square Plates in the Resonance Region," Report 2097-1, 28 January 1966, Antenna Laboratory, The Ohio State University Research Foundation; prepared under Contract No. AF 19(628)-4883 for Air Force Systems Command, United States Air Force, Bedford, Massachusetts.
- 4. Ryan, C.E., Jr., "A Computer Program for Backscatter by Targets Composed of Cones, Cylinders, and Disks," (in process), ElectroScience Laboratory, The Ohio State University Research Foundation; prepared under Contract F-19628-67-C-0318 for Department of the Air Force, ElectronicsSystems Division, L.C. Hanscom Field, Bedford, Massachusetts.

Security Classification

DOCUMENT CONTROL DATA - R&D						
(Security classification of title, body of abstract and indexing annotation must be entered when the averall report is classified)						
1. ORIGINATING ACTIVITY (Corporate author) ElectroScience Laboratory 2a. REPORT SECURITY CLASSIFICATION						
The Ohio State University, Department of Electrical Unclassified						
Engineering, 1320 Kinnear Rd., Columbus, Ohio N/A						
3. REPORT TITLE						
A Computer Program for Backscatter	by Smoothly Joined	,				
Second Degree Surfaces of Revolution						
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)						
Technical Report						
s. AUTHOR'S) (Last name, first name, initial)						
Ryan, C.E., Jr.						
Kyan, C.E., 51.						
6. REPORT DATE	74 TOTAL NO. OF PAGES	7b. NO. OF REFS				
April 1968	25	4				
84 CONTRACT OR GRANT NO.	94 ORIGINATOR'S REPORT NUM	BER(S)				
F-19628-67-C-0308						
b. PROJECT NO.	ESD-TR-68-213					
c. TASK	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)					
d.	and a specific of					
V						
10. AVAILABILITY/LIMITATION NOTICES						
This document has been approved for public						
release and sale; its distribution is unlimited.						
1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Deputy for Surveillance and Contro						
Systems, Electronic Systems Div						
*	L.G. Hanscom Field, Bedford, Mass.					
13. ABSTRACT	D. G. Hanseom 1 1e	id, Bediord, Mass.				
A computer program for calculation of the echo area of						
smoothly joined, N section convex conducting surfaces, described by						
a second degree equation is described. For the case of $E \theta$ (parallel)						
a second degree equation is described. For the case of Bo (paramet)						

A computer program for calculation of the echo area of smoothly joined, N section convex conducting surfaces, described by a second degree equation is described. For the case of E θ (parallel) polarization of the incident and scattered fields the solution is obtained by a combination of geometrical optics and creeping wave theory. For the case of E φ (perpendicular) polarization the solution is obtained using geometrical optics, and the creeping wave is neglected. The computed results for E θ polarization are in good agreement with measurements for prolate spheroids, prolate spheroid-sphere, and prolate spheroid-oblate spheroid combinations.

DD FORM 1473

UNCLASSIFIED
Security Classification

Security Classification

14.	LINK A		LINK B		LINK C	
KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT
Radar Cross Section Backscatter Surface of Revolution Computer Program Geometrical Optics Creeping Waves						

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate outhor) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 80. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 90. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification